Mathematical induction

Here is a little anecdote about the German mathematician Gauss who, as a pupil at age 8, did not pay attention in class (can you imagine?), with the result that his teacher made him sum up all natural numbers from 1 to 100 . The story has it that Gauss came up with the correct answer 5050 within seconds, which infuriated his teacher. How did Gauss do it? Well, possibly he knew that $1+2$

$$
1+2+3+4+\cdots+n=\frac{n \cdot(n+1)}{2}
$$

for all natural numbers n .9 Thus, taking $\mathrm{n}=100$, Gauss could easily calculate:

$$
1+2+3+4+\cdots+100=\frac{100 \cdot 101}{2}=5050
$$

Mathematical induction allows us to prove equations, such as the one in (1.5), for arbitrary n . More generally, it allows us to show that every natural number satisfies a certain property. Suppose we have a property M which we think is true of all natural numbers. We write $\mathrm{M}(5)$ to say that the property is true of 5 , etc. Suppose that we know the following two things about the property M:

1. Base case: The natural number 1 has property M, i.e. we have a proof of $M(1)$.
2. Inductive step: If n is a natural number which we assume to have property $M(n)$, then we can show that $n+1$ has property $M(n+1)$; i.e. we have a proof of $M(n) \rightarrow M(n+1)$.

Theorem

The sum $1+2+3+4+\cdots+n$ equals $n \cdot(n+1) / 2$ for all natural numbers n.

Proof: We use mathematical induction. In order to reveal the fine structure of our proof we write LHSn for the expression $1+2+3+4+\cdots+n$ and RHSn for $n \cdot(n+1) / 2$. Thus, we need to show LHSn $=$ RHSn for all $n \geq 1$.

Base case: If n equals 1 , then LHS1 is just 1 (there is only one summand), which happens to equal RHS1 $=1 \cdot(1+1) / 2$.

Inductive step: Let us assume that LHSn $=$ RHSn. Recall that this assumption is called the induction hypothesis; it is the driving force of our argument. We need to show $\mathrm{LHSn}+1=\mathrm{RHSn}+1$, i.e. that the longer sum $1+2+3+4+\cdots+(n+1)$ equals $(n+1) \cdot((n+1)+1) / 2$. The key observation is that the sum $1+2+3+4+\cdots+(n+1)$ is nothing but the sum $(1+2+3+4+\cdots+n)+(n+1)$ of two summands, where the first one is the sum of our induction hypothesis. The latter says that $1+2+3+4+\cdots+n$ equals $n \cdot(n+1) / 2$, and we are certainly entitled to substitute equals for equals in our reasoning. Thus, we compute

LHSn+1
$=1+2+3+4+\cdots+(n+1)$
$=\operatorname{LHSn}+(\mathrm{n}+1)$ regrouping the sum
LHSn+1
$=1+2+3+4+\cdots+(n+1)$
$=\mathrm{LHSn}+(\mathrm{n}+1)$ regrouping the sum
Since we successfully showed the base case and the inductive step, we can use mathematical induction to infer that all natural numbers n have the property stated in the theorem above.

Actually, there are numerous variations of this principle. For example, we can think of a version in which the base case is $\mathrm{n}=0$, which would then cover all natural numbers including 0 . Some statements hold only for all natural numbers, say, greater than 3 . So you would have to deal with a base case 4, but keep the version of the inductive step (see the exercises for such an example). The use of mathematical induction typically suceeds on properties $M(n)$ that involve inductive definitions (e.g. the definition of kl with $\mathrm{l} \geq 0$).

