
Mathematical induction 

Here is a little anecdote about the German mathematician Gauss who, as a pupil at age 8, did not 

pay attention in class (can you imagine?), with the result that his teacher made him sum up all 

natural numbers from 1 to 100. The story has it that Gauss came up with the correct answer 5050 

within seconds, which infuriated his teacher. How did Gauss do it? Well, possibly he knew that 

1+2 

 

 

for all natural numbers n. 9 Thus, taking n = 100, Gauss could easily calculate: 

 

Mathematical induction allows us to prove equations, such as the one in (1.5), for arbitrary n. More 

generally, it allows us to show that every natural number satisfies a certain property. Suppose we 

have a property M which we think is true of all natural numbers. We write M(5) to say that the 

property is true of 5, etc. Suppose that we know the following two things about the property M: 

1. Base case: The natural number 1 has property M, i.e. we have a proof of M(1). 

2. Inductive step: If n is a natural number which we assume to have property M(n), then we can 

show that n + 1 has property M(n + 1); i.e. we have a proof of M(n) → M(n + 1). 

 

Theorem 

The sum 1+2+3+4+ ··· + n equals n · (n + 1)/2 for all natural numbers n. 

 



Proof: We use mathematical induction. In order to reveal the fine structure of our proof we write 

LHSn for the expression 1 + 2 + 3+4+ ··· + n and RHSn for n · (n + 1)/2. Thus, we need to show 

LHSn = RHSn for all n ≥ 1. 

Base case: If n equals 1, then LHS1 is just 1 (there is only one summand), which happens to equal 

RHS1 = 1 · (1 + 1)/2. 

Inductive step: Let us assume that LHSn = RHSn. Recall that this assumption is called the 

induction hypothesis; it is the driving force of our argument. We need to show LHSn+1 = RHSn+1, 

i.e. that the longer sum 1 + 2 +3+4+ ··· + (n + 1) equals (n + 1) · ((n + 1) + 1)/2. The key observation 

is that the sum 1 + 2 + 3 + 4 + ··· + (n + 1) is nothing but the sum (1 + 2+3+4+ ··· + n)+(n + 1) of 

two summands, where the first one is the sum of our induction hypothesis. The latter says that 

1+2+3+4+ ··· + n equals n · (n + 1)/2, and we are certainly entitled to substitute equals for equals 

in our reasoning. Thus, we compute 

LHSn+1 

=1+2 +3+4+ ··· + (n + 1) 

= LHSn + (n + 1) regrouping the sum 

LHSn+1 

=1+2 +3+4+ ··· + (n + 1) 

= LHSn + (n + 1) regrouping the sum 

Since we successfully showed the base case and the inductive step, we can use mathematical 

induction to infer that all natural numbers n have the property stated in the theorem above. 

Actually, there are numerous variations of this principle. For example, we can think of a version 

in which the base case is n = 0, which would then cover all natural numbers including 0. Some 

statements hold only for all natural numbers, say, greater than 3. So you would have to deal with 

a base case 4, but keep the version of the inductive step (see the exercises for such an example). 

The use of mathematical induction typically suceeds on properties M(n) that involve inductive 

definitions (e.g. the definition of kl with l ≥ 0). 


